References
Anderson, C., and L. M. Ryan. 2017. “Comparison of spatio-temporal disease mapping approaches including an application to ischaemic heart disease in New South Wales, Australia.” International Journal of Environmental Research and Public Health 14 (2). https://doi.org/10.3390/ijerph14020146.
Armstrong, B. K., J. A. Gillespie, S. R. Leeder, G. L. Rubin, and L. M. Russell. 2007. “Challenges in health and health care for Australia.” Medical Journal of Australia 187 (9): –489. https://doi.org/10.5694/j.1326-5377.2007.tb01383.x.
Australian Bureau of Statistics [ABS]. 2013a. “Australian Statistical Geography Standard (ASGS): Correspondences, July 2011.” “Statistical Local Area 2011 to Statistical Area Level 2 2011,” data cube: Excel spreadsheet, cat. no. 1270.0.55.006. www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.006July%202011.
———. 2013b. “Australian Statistical Geography Standard (ASGS): Volume 5 - Remoteness Structure, July 2011.” cat. no. 1270.0.55.005. www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.005July%202011.
———. 2013c. “Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia.” “Statistical Area Level 2, Indexes, SEIFA 2011,” data cube: Excel spreadsheet, cat. no. 2033.0.55.001. www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/2033.0.55.0012011.
———. 2017. “ABS.Stat Dataset: ERP by Statistical Areas Level 2 (SA2) geographical areas (ASGS 2011), Age and Sex, 2001 to 2016.” cat. no. 3235.0. www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3235.02016.
———. 2018. “Australian Demographic Statistics: ERP by single year of age, 1971 to 2017.” cat. no. 3101.0. www.abs.gov.au/ausstats/abs@.nsf/mf/3101.0. Retrieved 28 Mar 2018.
Baade, P., S. Cramb, P. Dasgupta, and D. Youlden. 2016. “Estimating cancer survival - improving accuracy and relevance.” Australian and New Zealand Journal of Public Health 40 (5): –404. https://doi.org/10.1111/1753-6405.12610.
Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2014. Hierarchical Modeling and Analysis for Spatial Data. 2nd ed. Boca Raton: CRC Press/Chapman & Hall, Monographs on Statistics; Applied Probability 135.
Berkson, J. 1942. “The calculation of survival rates.” In Carcinoma and Other Malignant Lesions of the Stomach, edited by W. Walters, H. K. Gray, and J. T. Priestley, pp. 467–484. Sanders.
Berry, D. A., and D. K. Stangl (eds). 1996. Bayesian Biostatistics. New York: Marcel Dekker.
Besag, J. 1974. “Spatial interaction and the statistical analysis of lattice systems.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 36 (2): –236.
Besag, J., J. York, and A. Mollié. 1991. “Bayesian image restoration with application in spatial statistics.” Annals of the Institute of Statistical Mathematics 43 (1): –20. https://doi.org/10.1007/BF00116466.
Best, N., S. Richardson, and A. Thomson. 2005. “A comparison of Bayesian spatial models for disease mapping.” Statistical Methods in Medical Research 14 (1): –59. https://doi.org/10.1191/0962280205sm388oa.
Betancourt, M. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.” [arXiv: 1701.02434v1.
Bois, J. P., M. S. Clements, X. Q. Yu, R. Supramaniam, D. P. Smith, S. Bovaird, and D. L. O’Connell. 2007. Cancer Maps for New South Wales 1998 to 2002. Sydney: The Cancer Council NSW.
Brooks, S. P., and A. Gelman. 1998. “General methods for monitoring convergence of iterative simulations.” Journal of Computational and Graphical Statistics 7 (4): –455. https://doi.org/10.2307/1390675.
Cappe, O., and C. P. Robert. 2000. “Markov chain Monte Carlo: 10 years and still running!” Journal of the American Statistical Association 95 (452): –1286. https://doi.org/10.1080/01621459.2000.10474330.
Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. “Stan: A probabilistic programming language.” Journal of Statistical Software 76 (1). https://doi.org/10.18637/jss.v076.i01.
Celeux, G., F. Forbes, C. P. Rober, and D. M. Titterington. 2006. “Deviance information criteria for missing data models.” Bayesian Analysis 1 (4): –673. https://doi.org/10.1214/06-ba122.
Clements, A. C. A., N. J. S. Lwambo, L. Blair, U. Nyandindi, G. Kaatano, S. Kinung’hi, J. P. Webster, A. Fenwick, and S. Brooker. 2006. “Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania.” Tropical Medicine & International Health 11 (4): –503. https://doi.org/10.1111/j.1365-3156.2006.01594.x.
Congdon, P. 2017. “Representing spatial dependence and spatial discontinuity in ecological epidemiology: a scale mixture approach.” Stochastic Environmental Research and Risk Assessment 31 (2): –304. https://doi.org/10.1007/s00477-016-1292-9.
Cowles, M. K., and B. P. Carlin. 1996. “Markov chain Monte Carlo convergence diagnostics: a comparative review.” Journal of the American Statistical Association 91 (434): –904. https://doi.org/10.2307/2291683.
Cramb, S. M., E. W. Duncan, P. D. Baade, and K. L. Mengersen. 2017. Investigation of Bayesian Spatial Models. Brisbane: Cancer Council Queensland; Queensland University of Technology (QUT).
Cramb, S. M., K. L. Mengersen, and P. D. Baade. 2011a. Atlas of Cancer in Queensland: Geographical Variation in Incidence and Survival, 1998 to 2007. Brisbane: Viertel Centre for Research in Cancer Control, Cancer Council Queensland.
———. 2011b. “Developing the atlas of cancer in Queensland: methodological issues.” International Journal of Health Geographics 10 (1). https://doi.org/10.1186/1476-072x-10-9.
Cramb, S. M., K. L. Mengersen, P. C. Lambert, Ryan L. M., and P. D. Baade. 2016. “A flexible parametric approach to examining spatial variation in relative survival.” Statistics in Medicine 35 (29): –5463. https://doi.org/10.1002/sim.7071.
Cramb, S. M., K. L. Mengersen, G. Turrell, and P. D. Baade. 2012. “Spatial inequalities in colorectal and breast cancer survival: premature deaths and associated factors.” Health and Place 18 (6): –1421. https://doi.org/10.1016/j.healthplace.2012.07.006.
Denison, D. G. T., and C. C. Homes. 2001. “Bayesian partitioning for estimating disease risk.” Biometrics 57 (1): –149. https://doi.org/10.1111/j.0006-341x.2001.00143.x.
Denwood, M. J. 2016. “runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS.” Journal of Statistical Software 71 (9): –25. https://doi.org/10.18637/jss.v071.i09.
Dickman, P. W., P. C. Lambert, and T. Hakulinen. 2018. Population-Based Cancer Survival Analysis. Wiley.
Dickman, P. W., A. Sloggett, M. Hills, and T. Hakulinen. 2004. “Regression models for relative survival.” Statistics in Medicine 23 (1): –64. https://doi.org/10.1002/sim.1597.
Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth. 1987. “Hybrid Monte Carlo.” Physics Letters B 195 (2): –222. https://doi.org/10.1016/0370-2693(87)91197-X.
Duncan, E. W., and K. L. Mengersen. 2020. “Comparing Bayesian spatial models: goodness-of-smoothing criteria for assessing under- and over-smoothing.” PLOS ONE 15 (5): e0233019. https://doi.org/10.1371/journal.pone.0233019.
Duncan, E. W., N. M. White, and K. Mengersen. 2017. “Spatial smoothing in Bayesian models: a comparison of weights matrix specifications and their impact on inference.” International Journal of Health Geographics 16 (1). https://doi.org/10.1186/s12942-017-0120-x.
Eberly, L. E., and B. P. Carlin. 2000. “Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models.” Statistics in Medicine 19 (17): –2294. https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2279::aid-sim569>3.0.co;2-r.
Ederer, F., L. M. Axtell, and S. J. Cutler. 1961. The Relative Survival Rate: A Statistical Methodology. National Cancer Institute Monograph.
Ederer, F., and H. Heise. 1959. Instructions to IBM 650 Programmers in Processing Survival Computations. Methodological Note No. 10, End Results Evaluation Section. Technical Report. Bethesda, MD: National Cancer Institute.
Fairley, L., D. Forman, R. West, and S. Manda. 2008. “Spatial variation in prostate cancer survival in the Northern and Yorkshire region of England using Bayesian relative survival smoothing.” British Journal of Cancer 99 (11): –1793. https://doi.org/10.1038/sj.bjc.6604757.
Gelfand, A. E., and A. F. M. Smith. 1990. “Sampling based approaches to calculating marginal densities.” Journal of the American Statistical Association 85 (410): –409. https://doi.org/10.1080/01621459.1990.10476213.
Gelman, A., J. Hwang, and A. Vehtari. 2014. “Understanding predictive information criteria for Bayesian models.” Statistics and Computing 24 (6): –1016. https://doi.org/10.1007/s11222-013-9416-2.
Gelman, A., and D. B. Rubin. 1992. “Inference from iterative simulation using multiple sequences.” Statistical Science 7 (4): –472. https://doi.org/10.1214/ss/1177011136.
Geman, S., and D. Geman. 1984. “Stochastic relaxation, Gibbs Distributions, and the Bayesian restoration of images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (6): –741. https://doi.org/10.2307/2334940.
Geweke, J. 1992. “Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments.” In Bayesian Statistics 4, edited by J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, pp. 169–193. Oxford: Oxford University Press.
Gideon, S. 1978. “Estimating the dimension of a model.” Annals of Statistics 6 (2): –464. https://doi.org/10.1214/aos/1176344136.
Gilks, W. R., N. G. Best, and K. K. C. Tan. 1995. “Adaptive rejection Metropolis sampling within Gibbs sampling.” Applied Statistics 44 (4): –472. https://doi.org/10.2307/2986138.
Gilks, W. R., and P. Wild. 1992. “Adaptive rejection sampling for Gibbs sampling.” Applied Statistics 41 (2): –348. https://doi.org/10.2307/2347565.
Goicoa, T., M. D. Ugarte, J. Etxeberria, and A. F. Militino. 2012. “Comparing CAR and P-spline models in spatial disease mapping.” Environmental and Ecological Statistics 19 (4): –599. https://doi.org/10.1007/s10651-012-0201-8.
Görür, D., and Y. W. Teh. 2011. “Concave-convex adaptive rejection sampling.” Journal of Computational and Graphical Statistics 20 (3): –691. https://doi.org/10.1198/jcgs.2011.09058.
Green, P. J., and S. Richardson. 2002. “Hidden Markov models and disease mapping.” Journal of the American Statistical Association 97 (460): –1070. https://doi.org/10.1198/016214502388618870.
Hakulinen, T. 1982. “Cancer survival corrected for heterogeneity in patient withdrawal.” Biometrics 38 (4). https://doi.org/10.2307/2529873.
Hammersley, J. M., and P. Clifford. 1971. Markov Fields on Finite Graphs and Lattices. Unpublished.
Hastings, W. K. 1970. “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika 57 (1). https://doi.org/10.2307/2334940.
Hennerfeind, A., L. Held, and E. A. Sauleau. 2008. “A Bayesian analysis of relative cancer survival with geoadditive models.” Statistical Modelling 8 (2): –139. https://doi.org/10.1177/1471082X0800800201.
Hinchliffe, S. R., M. J. Rutherford, M. J. Crowther, C. P. Nelson, and P. C. Lambert. 2012. “Should relative survival be used with lung cancer data?” British Journal of Cancer 106 (11): –1859. https://doi.org/10.1038/bjc.2012.182.
Holleczek, B., and H. Brenner. 2013. “Model based period analysis of absolute and relative survival with R: Data preparation, model fitting and derivation of survival estimates.” Computer Methods and Programs in Biomedicine 110 (2): –202. https://doi.org/10.1016/j.cmpb.2012.10.004.
Knorr-Held, L., and G. Raßer. 2000. “Bayesian detection of clusters and discontinuities in disease maps.” Biometrics 56 (1): –21. https://doi.org/10.1111/j.0006-341x.2000.00013.x.
Lawson, A. B., and A. Clark. 2002. “Spatial mixture relative risk models applied to disease mapping.” Statistics in Medicine 21 (3): –370. https://doi.org/10.1002/sim.1022 .
Lee, D. 2011. “A comparison of conditional autoregressive models used in Bayesian disease mapping.” Spatial and Spatio-Temporal Epidemiology 2 (2): –89. https://doi.org/10.1016/j.sste.2011.03.001.
———. 2013. “CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors.” Journal of Statistical Software 55 (13): –24. https://doi.org/10.18637/jss.v055.i13.
Lee, D., and R. Mitchell. 2012. “Boundary detection in disease mapping studies.” Biostatistics 13 (3): –426. https://doi.org/10.1093/biostatistics/kxr036.
———. 2013. “Locally adaptive spatial smoothing using conditional auto-regressive models.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 62 (4): –608. https://doi.org/10.1111/rssc.12009 .
Lee, D., and C. Sarran. 2015. “Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies.” Environmetrics 26 (7): –487. https://doi.org/10.1002/env.2348 .
Leroux, B. G., X. Lei, and N. Breslow. 1999. “Estimation of disease rates in small areas: a new mixed model for spatial dependence.” Statistical Models in Epidemiology, the Environment, and Clinical Trials 116 : –191. https://doi.org/10.1007/978-1-4612-1284-3_4.
Lindgren, F., and H. Rue. 2015. “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical Software 63 (19): –25. https://doi.org/10.18637/jss.v063.i19.
Lu, H., C. Reilly, S. Banerjee, and B. Carlin. 2007. “Bayesian areal wombling via adjacency modelling.” Environmental and Ecological Statistics 14 (4): –452. https://doi.org/10.1007/s10651-007-0029-9.
Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. “WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility.” Statistics and Computing 10 (4): –337. https://doi.org/10.1023/a:1008929526011.
Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter. 2012. The BUGS Book – A Practical Introduction to Bayesian Analysis. London: Chapman; Hall/CRC. https://doi.org/10.1201/b13613.
MacNab, Y. C. 2007. “Spline smoothing in Bayesian disease mapping.” Environmetrics 18 (7): –744. https://doi.org/10.1002/env.876 .
Martins, D. Simpson, T. G., and H. Rue. 2013. “Bayesian computing with INLA: new features.” Computational Statistics & Data Analysis 67 : –83. https://doi.org/10.1016/j.csda.2013.04.014.
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. “Equations of state calculations by fast computing machine.” Journal of Chemical Physics 21 (6): –1092. https://doi.org/10.1063/1.1699114.
Moran, P. A. P. 1950. “Notes on continuous stochastic phenomena.” Biometrika 37 (1/2): –23. https://doi.org/10.2307/2332142.
Nathoo, F. S., and P. Ghosh. 2013. “Skew-elliptical spatial random effect modeling for areal data with application to mapping health utilization rates.” Statistics in Medicine 32 (2): –306. https://doi.org/10.1002/sim.5504 .
Neal, R. M. 2003. “Slice Sampling.” The Annals of Statistics 31 (3): –767. https://doi.org/10.1214/aos/1056562461.
Perme, M. P., J. Stare, and J. Estève. 2012. “On estimation in relative survival.” Biometrics 68 (1): –120. https://doi.org/10.1111/j.1541-0420.2011.01640.x.
Perperoglou, A., and P. H. C. Eilers. 2010. “Penalized regression with individual deviance effects.” Computational Statistics 25 (2): –361. https://doi.org/10.1007/s00180-009-0180-x.
Plummer, M. 2003. “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, edited by K. Hornik, F. Leisch, and A. Zeileis, pp. 763–773. Vienna, Austria. http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.
———. 2011. “rjags: Bayesian Graphical Models Using MCMC.” R package version 2.2.0-3. http://CRAN.R-project.org/package=rjags.
———. 2017. “JAGS Version 4.3.0 user manual.” http://www.stats.ox.ac.uk/~nicholls/MScMCMC15/jags_user_manual.pdf.
Public Health Information Development Unit, Torrens University Australia [PHIDU]. 2016. “Social Health Atlases.” http://phidu.torrens.edu.au/social-health-atlases.
Queensland Government [QG]. 2018. “National death data.” www.qld.gov.au/law/births-deaths-marriages-and-divorces/data/national-data.
R Core Team. 2018. “R: A language and environment for statistical computing.” R Foundation for Statistical Computing. https://www.R-project.org.
Raftery, A. E., and S. Lewis. 1996. “How many iterations in the Gibbs sampler?” In Bayesian Statistics 4, edited by J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, pp. 763–773. Oxford: Oxford University Press.
Richardson, S. 1996. “Statistical methods for geographical correlation studies.” In Geographical and environmental epidemiology, edited by P. Elliot, J. Cuzick, D. English, and R. Stern, pp. 181–204. Oxford: Oxford University Press.
Richardson, S., A. Thomson, N. Best, and P. Elliot. 2004. “Interpreting posterior relative risk estimates in disease-mapping studies.” Environmental Health Perspectives 112 (9): –1025. https://doi.org/10.1289/ehp.6740.
Riebler, A., S. H. Sørbye, D. Simpson, and H. Rue. 2016. “An intuitive Bayesian spatial model for disease mapping that accounts for scaling.” Statistical Methods in Medical Research 25 (4): –1165. https://doi.org/10.1177/0962280216660421.
Robert, C. P. 2016. “The Metropolis-Hastings Algorithm.” arXiv: 1504.01896.
Robert, C., and G. Casella. 2011. “A short history of Markov chain Monte Carlo: subjective recollections from incomplete data.” Statistical Science 26 (1): –115. https://doi.org/10.1214/10-STS351.
Rogozhnikov, A. 2016. “Hamiltonian Monte Carlo explained.” http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html.
Rue, H., S. Martino, and N. Chopin. 2009. “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): –392. https://doi.org/10.1111/j.1467-9868.2008.00700.x.
Saez, M., M. A. Barceló, C. Martos, C. Saurina, R. Marcos-Gragera, G. Renart, R. Ocaña-Riola, C. Feja, and T. Alcalá. 2012. “Spatial variability in relative survival from female breast cancer.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 175 (1): –134. https://doi.org/10.1111/j.1467-985x.2011.00720.x.
Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and V. der Linde. 2002. “Bayesian measures of model complexity and fit (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 (4): –640. https://doi.org/10.1111/1467-9868.00353.
Spiegelhalter, D., A. Thomas, N. Best, and D. Lunn. 2003. “WinBUGS User Manual.” Version 1.4. https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf.
———. 2014. “OpenBUGS User Manual.” Version 3.2.3. http://www.openbugs.net/w/Manuals?action=AttachFile&do=view&target=OpenBUGS_Manual.pdf.
Stan Development Team. 2018a. “RStan: the R interface to Stan.” R package version 2.18.2. http://CRAN.R-project.org/package=rstan.
———. 2018b. “Stan user’s guide, version 2.19.” https://mc-stan.org/docs/2_19/stan-users-guide/index.html.
Sturtz, S., U. Ligges, and A. Gelman. 2005. “R2WinBUGS: A package for running WinBUGS from R.” Journal of Statistical Software 12 (3): –16. https://doi.org/10.18637/jss.v012.i03.
———. 2010. “R2OpenBUGS: A package for running OpenBUGS from R.” R package version 3.2.3.2. https://cran.r-project.org/web/packages/R2OpenBUGS.
Su, Y.-S. and Yajima, M. 2015. “R2jags: Using R to Run ‘JAGS’.” R package version 0.5-7. https://CRAN.R-project.org/package=R2jags.
Vehtari, A., A. Gelman, and J. Gabry. 2017. “Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC.” Statistics and Computing 27 (5): –1432. https://doi.org/10.1007/s11222-016-9709-3.
Watanabe, S. 2010. “Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory.” Journal of Machine Learning Research 11 : –3594.
———. 2013. “A widely applicable Bayesian information criterion.” Journal of Machine Learning Research 14 : –897.